Minggu, 01 Januari 2012

Tips Belajar Matematika

Setiap orang memiliki cara yang unik dalam belajar yang mungkin saja antara yang satu dengan yang lainnya saling berbeda. Oleh sebab tidaklah benar andai dikatakan bahwa model belajar yang satu lebih unggul dibanding model belajar yang lain. Semua tergantung dengan kebiasaan dan potensi masing-masing. Seseorang memang selalu memiliki kecenderungan terhadap model atau cara belajar tertentu. Apakah itu visual, auditorial ataupun kinestetik.
Dalam tulisan ini saya akan memberikan beberapa tips yang bisa Anda ikuti ketika belajar matematika. Beberapa tips mungkin saja cocok dengan Anda, tetapi mungkin juga beberapa tips yang lainnya kurang cocok. Tidak ada yang salah dengan hal itu! Yang perlu diperhatikan adalah Anda tahu potensi dan posisi atau cara dan model belajar yang cocok dan Anda rasakan berguna unntuk mendapatkan hasil belajar yang optimal.

Belajar Matematika tidak Seperti Menonton Olah Raga

Anda tidak bisa belajar matematika cukup dengan hanya datang ke kelas, melihat guru menerangkan lalu mengerjakan soal. Tetapi lebih dari itu, Anda harus terlibat aktif di dalam setiap proses pembelajaran. Selain datang dan hadir di ruangan kelas ketika pembelajaran berlangsung, Anda juga harus selalu memperhatikan apa yang sedang dijelaskan, membuat catatan setiap materi dengan baik dan tersusun rapih, mengerjakan beberapa pekerjaan rumah meskipun tidak diwajibkan oleh guru. Anda juga perlu belajar dalam jadwal yang teratur, tidak hanya belajar ketika akan diadakan tes. Seperti itulah proses belajar yangn harus Anda lalui.
Pada kenyataannya seringkali kebanyakan siswa sekolah bahkan seorang mahasiswa sekalipun, belajar lebih keras hanya ketika mereka akan menghadapi tes matematika. Sementara di lain waktu dia tidak pernah mengulangi pelajaran yang diterimanya di kelas. Belajar demikian tentunya tidak akan berhasil optimal.

Memahami Prinsip Dasar itu Penting

Walaupun ada saatnya Anda perlu menghapal beberapa bagian ketika belajar matematika, tetapi matematika bukanlah pelajaran hapalan. Sehingga untuk menguasai beberapa konsep matematika, menghapal rumus itu tidaklah cukup. Tentu berbeda halnya ketika Anda akan menghadapi tes pelajaran sejarah. Cukup menghapal nama, kejadian atau peristiwa sejarah atau waktu berupa sekumpulan tanggal, bulan dan tahun, sepertinya Anda bisa melewati tes itu dengan baik.
Selain menghapal beberapa rumus, Anda juga perlu mengetahui beberapa hal yang berkaitan dengan rumus itu, termasuk darimana rumus itu ditemukan (penurunannya), atau batasan-batasan apa saja yang harus dipenuhi agar rumus itu bisa digunakan dengan tepat.
Beberapa rumus seringkali bersifat umum, sehingga diperlukan identifikasi dan analisa jika ingin menggunakan rumus tersebut untuk menyelesaikan sebuah persoalan terkait. Jika Anda tidak memahami bagaimana rumus itu bekerja dan prinsip-prinsip yang ada dibalik rumus itu, bukan tidak mungkin menggunakan rumus justru menjadi terasa lebih sulit. Anda harus mengingat dan memperhatikan itu, atau malah Anda hanya akan mendapatkan jawaban yang keliru.

Matematika itu Ilmu Terstruktur

Matematika adalah ilmu terstruktur dan bertingkat. Hampir semua materi matematika yang akan Anda pelajari itu saling berkaitan. Untuk bisa memahami beberapa konsep lebih tinggi diperlukan pemahaman terhadap konsep di bawahnya. Sehingga agar tidak bermasalah dengan beberapa konsep di level yang lebih tinggi, konsep-konsep di level sebelumnya itu harus dikuasai dan tidak boleh dilupakan.
Ketiga hal di atas adalah hal utama yang harus Anda perhatikan ketika belajar matematika. Tips di atas tentunya tidak hanya berlaku bagi siswa sekolah, tapi berlaku bagi siapa saja yang ingin belajar matematika di luar sekolah (Homeschooling). Jika ada tips lain yang ingin Anda tambahkan, Anda bisa menuliskannya di kolom komentar. Semoga berguna!
sumber : http://www.matematikamenyenangkan.com

Sejarah matematika

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Cabang pengkajian yang dikenal sebagai sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dan sedikit perluasannya, penyelidikan terhadap metode dan notasi matematika di masa silam.
Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat. Tulisan matematika terkuno yang telah ditemukan adalah Plimpton 322 (matematika Babilonia sekitar 1900 SM),[1] Lembaran Matematika Rhind (Matematika Mesir sekitar 2000-1800 SM)[2] dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai teorema Pythagoras, yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.
Sumbangan matematikawan Yunani memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan kekakuan matematika di dalam pembuktian matematika) dan perluasan pokok bahasan matematika.[3] Kata "matematika" itu sendiri diturunkan dari kata Yunani kuno, μάθημα (mathema), yang berarti "mata pelajaran".[4] Matematika Cina membuat sumbangan dini, termasuk notasi posisional. Sistem bilangan Hindu-Arab dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam.[5][6] Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini.[7] Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah pada pengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.
Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abad kemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

Matematika prasejarah

Asal mula pemikiran matematika terletak di dalam konsep bilangan, besaran, dan bangun.[8] Pengkajian modern terhadap fosil binatang menunjukkan bahwa konsep ini tidak berlaku unik bagi manusia. Konsep ini mungkin juga menjadi bagian sehari-hari di dalam kawanan pemburu. Bahwa konsep bilangan berkembang tahap demi tahap seiring waktu adalah bukti di beberapa bahasa zaman kini mengawetkan perbedaan antara "satu", "dua", dan "banyak", tetapi bilangan yang lebih dari dua tidaklah demikian.[8]
Benda matematika tertua yang sudah diketahui adalah tulang Lebombo, ditemukan di pegunungan Lebombo di Swaziland dan mungkin berasal dari tahun 35000 SM.[9] Tulang ini berisi 29 torehan yang berbeda yang sengaja digoreskan pada tulang fibula baboon.[10] Terdapat bukti bahwa kaum perempuan biasa menghitung untuk mengingat siklus haid mereka; 28 sampai 30 goresan pada tulang atau batu, diikuti dengan tanda yang berbeda.[11] Juga artefak prasejarah ditemukan di Afrika dan Perancis, dari tahun 35.000 SM dan berumur 20.000 tahun,[12] menunjukkan upaya dini untuk menghitung waktu.[13]
Tulang Ishango, ditemukan di dekat batang air Sungai Nil (timur laut Kongo), berisi sederetan tanda lidi yang digoreskan di tiga lajur memanjang pada tulang itu. Tafsiran umum adalah bahwa tulang Ishango menunjukkan peragaan terkuno yang sudah diketahui tentang barisan bilangan prima[10] atau kalender lunar enam bulan.[14] Periode Predinastik Mesir dari milenium ke-5 SM, secara grafis menampilkan rancangan-rancangan geometris. Telah diakui bahwa bangunan megalit di Inggris dan Skotlandia, dari milenium ke-3 SM, menggabungkan gagasan-gagasan geometri seperti lingkaran, elips, dan tripel Pythagoras di dalam rancangan mereka.[15]

Timur Dekat kuno

Mesopotamia

Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik.[16] Dinamai "Matematika Babilonia" karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an.[17] Ditulis di dalam tulisan paku, lempengan ditulisi ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.[18]
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar.[19] Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Kemajuan orang Babilonia di dalam matematika didukung oleh fakta bahwa 60 memiliki banyak pembagi. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal. Bagaimanapun, mereka kekurangan kesetaraan koma desimal, dan sehingga nilai tempat suatu simbol seringkali harus dikira-kira berdasarkan konteksnya.

Mesir

Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik, Yunani menggantikan bahasa Mesir sebagai bahasa tertulis bagi kaum terpelajar Bangsa Mesir, dan sejak itulah matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga "Lembaran Ahmes" berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM.[20] Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, perbagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya,[21] termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6).[22] Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu [23] juga barisan aritmetika dan geometri.[24]
Juga tiga unsur geometri yang tertulis di dalam lembaran Rhind menyiratkan bahasan paling sederhana mengenai geometri analitik: (1) pertama, cara memperoleh hampiran π yang akurat kurang dari satu persen; (2) kedua, upaya kuno penguadratan lingkaran; dan (3) ketiga, penggunaan terdini kotangen.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM.[25] Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan. Satu soal dipandang memiliki kepentingan khusus karena soal itu memberikan metoda untuk memperoleh volume limas terpenggal: "Jika Anda dikatakan: Limas terpenggal setinggi 6 satuan panjang, yakni 4 satuan panjang di bawah dan 2 satuan panjang di atas. Anda menguadratkan 4, sama dengan 16. Anda menduakalilipatkan 4, sama dengan 8. Anda menguadratkan 2, sama dengan 4. Anda menjumlahkan 16, 8, dan 4, sama dengan 28. Anda ambil sepertiga dari 6, sama dengan 2. Anda ambil dua kali lipat dari 28 twice, sama dengan 56. Maka lihatlah, hasilnya sama dengan 56. Anda memperoleh kebenaran."
Akhirnya, lembaran Berlin (kira-kira 1300 SM [26]) menunjukkan bahwa bangsa Mesir kuno dapat menyelesaikan persamaan aljabar orde dua.[27]

Matematika Yunani

Pythagoras dari Samos
Matematika Yunani merujuk pada matematika yang ditulis di dalam bahasa Yunani antara tahun 600 SM sampai 300 M.[28] Matematikawan Yunani tinggal di kota-kota sepanjang Mediterania bagian timur, dari Italia hingga ke Afrika Utara, tetapi mereka dibersatukan oleh budaya dan bahasa yang sama. Matematikawan Yunani pada periode setelah Iskandar Agung kadang-kadang disebut Matematika Helenistik.
Thales dari Miletus
Matematika Yunani lebih berbobot daripada matematika yang dikembangkan oleh kebudayaan-kebudayaan pendahulunya. Semua naskah matematika pra-Yunani yang masih terpelihara menunjukkan penggunaan penalaran induktif, yakni pengamatan yang berulang-ulang yang digunakan untuk mendirikan aturan praktis. Sebaliknya, matematikawan Yunani menggunakan penalaran deduktif. Bangsa Yunani menggunakan logika untuk menurunkan simpulan dari definisi dan aksioma, dan menggunakan kekakuan matematika untuk membuktikannya.[29]
Matematika Yunani diyakini dimulakan oleh Thales dari Miletus (kira-kira 624 sampai 546 SM) dan Pythagoras dari Samos (kira-kira 582 sampai 507 SM). Meskipun perluasan pengaruh mereka dipersengketakan, mereka mungkin diilhami oleh Matematika Mesir dan Babilonia. Menurut legenda, Pythagoras bersafari ke Mesir untuk mempelajari matematika, geometri, dan astronomi dari pendeta Mesir.
Thales menggunakan geometri untuk menyelesaikan soal-soal perhitungan ketinggian piramida dan jarak perahu dari garis pantai. Dia dihargai sebagai orang pertama yang menggunakan penalaran deduktif untuk diterapkan pada geometri, dengan menurunkan empat akibat wajar dari teorema Thales. Hasilnya, dia dianggap sebagai matematikawan sejati pertama dan pribadi pertama yang menghasilkan temuan matematika.[30] Pythagoras mendirikan Mazhab Pythagoras, yang mendakwakan bahwa matematikalah yang menguasai semesta dan semboyannya adalah "semua adalah bilangan".[31] Mazhab Pythagoraslah yang menggulirkan istilah "matematika", dan merekalah yang memulakan pengkajian matematika. Mazhab Pythagoras dihargai sebagai penemu bukti pertama teorema Pythagoras,[32] meskipun diketahui bahwa teorema itu memiliki sejarah yang panjang, bahkan dengan bukti keujudan bilangan irasional.
Eudoxus (kira-kira 408 SM sampai 355 SM) mengembangkan metoda kelelahan, sebuah rintisan dari Integral modern. Aristoteles (kira-kira 384 SM sampai 322 SM) mulai menulis hukum logika. Euklides (kira-kira 300 SM) adalah contoh terdini dari format yang masih digunakan oleh matematika saat ini, yaitu definisi, aksioma, teorema, dan bukti. Dia juga mengkaji kerucut. Bukunya, Elemen, dikenal di segenap masyarakat terdidik di Barat hingga pertengahan abad ke-20.[33] Selain teorema geometri yang terkenal, seperti teorem Pythagoras, Elemen menyertakan bukti bahwa akar kuadrat dari dua adalah irasional dan terdapat tak-hingga banyaknya bilangan prima. Saringan Eratosthenes (kira-kira 230 SM) digunakan untuk menemukan bilangan prima.
Archimedes (kira-kira 287 SM sampai 212 SM) dari Syracuse menggunakan metoda kelelahan untuk menghitung luas di bawah busur parabola dengan penjumlahan barisan tak hingga, dan memberikan hampiran yang cukup akurat terhadap Pi.[34] Dia juga mengkaji spiral yang mengharumkan namanya, rumus-rumus volume benda putar, dan sistem rintisan untuk menyatakan bilangan yang sangat besar.

Matematika Cina

Sembilan Bab tentang Seni Matematika.
Matematika Cina permulaan adalah berlainan bila dibandingkan dengan yang berasal dari belahan dunia lain, sehingga cukup masuk akal bila dianggap sebagai hasil pengembangan yang mandiri.[35] Tulisan matematika yang dianggap tertua dari Cina adalah Chou Pei Suan Ching, berangka tahun antara 1200 SM sampai 100 SM, meskipun angka tahun 300 SM juga cukup masuk akal.[36]
Hal yang menjadi catatan khusus dari penggunaan matematika Cina adalah sistem notasi posisional bilangan desimal, yang disebut pula "bilangan batang" di mana sandi-sandi yang berbeda digunakan untuk bilangan-bilangan antara 1 dan 10, dan sandi-sandi lainnya sebagai perpangkatan dari sepuluh.[37] Dengan demikian, bilangan 123 ditulis menggunakan lambang untuk "1", diikuti oleh lambang untuk "100", kemudian lambang untuk "2" diikuti lambang utnuk "10", diikuti oleh lambang untuk "3". Cara seperti inilah yang menjadi sistem bilangan yang paling canggih di dunia pada saat itu, mungkin digunakan beberapa abad sebelum periode masehi dan tentunya sebelum dikembangkannya sistem bilangan India.[38] Bilangan batang memungkinkan penyajian bilangan sebesar yang diinginkan dan memungkinkan perhitungan yang dilakukan pada suan pan, atau (sempoa Cina). Tanggal penemuan suan pan tidaklah pasti, tetapi tulisan terdini berasal dari tahun 190 M, di dalam Catatan Tambahan tentang Seni Gambar karya Xu Yue.
Karya tertua yang masih terawat mengenai geometri di Cina berasal dari peraturan kanonik filsafat Mohisme kira-kira tahun 330 SM, yang disusun oleh para pengikut Mozi (470–390 SM). Mo Jing menjelaskan berbagai aspek dari banyak disiplin yang berkaitan dengan ilmu fisika, dan juga memberikan sedikit kekayaan informasi matematika.
Pada tahun 212 SM, Kaisar Qín Shǐ Huáng (Shi Huang-ti) memerintahkan semua buku di dalam Kekaisaran Qin selain daripada yang resmi diakui pemerintah haruslah dibakar. Dekret ini tidak dihiraukan secara umum, tetapi akibat dari perintah ini adalah begitu sedikitnya informasi tentang matematika Cina kuno yang terpelihara yang berasal dari zaman sebelum itu. Setelah pembakaran buku pada tahun 212 SM, dinasti Han (202 SM–220 M) menghasilkan karya matematika yang barangkali sebagai perluasan dari karya-karya yang kini sudah hilang. Yang terpenting dari semua ini adalah Sembilan Bab tentang Seni Matematika, judul lengkap yang muncul dari tahun 179 M, tetapi wujud sebagai bagian di bawah judul yang berbeda. Ia terdiri dari 246 soal kata yang melibatkan pertanian, perdagangan, pengerjaan geometri yang menggambarkan rentang ketinggian dan perbandingan dimensi untuk menara pagoda Cina, teknik, survey, dan bahan-bahan segitiga siku-siku dan π. Ia juga menggunakan prinsip Cavalieri tentang volume lebih dari seribu tahun sebelum Cavalieri mengajukannya di Barat. Ia menciptakan bukti matematika untuk teorema Pythagoras, dan rumus matematika untuk eliminasi Gauss. Liu Hui memberikan komentarnya pada karya ini pada abad ke-3 M.
Zhang Heng (78–139)
Sebagai tambahan, karya-karya matematika dari astronom Han dan penemu Zhang Heng (78–139) memiliki perumusan untuk pi juga, yang berbeda dari cara perhitungan yang dilakukan oleh Liu Hui. Zhang Heng menggunakan rumus pi-nya untuk menentukan volume bola. Juga terdapat karya tertulis dari matematikawan dan teoriwan musik Jing Fang (78–37 SM); dengan menggunakan koma Pythagoras, Jing mengamati bahwa 53 perlimaan sempurna menghampiri 31 oktaf. Ini kemudian mengarah pada penemuan 53 temperamen sama, dan tidak pernah dihitung dengan tepat di tempat lain hingga seorang Jerman, Nicholas Mercator melakukannya pada abad ke-17.
Bangsa Cina juga membuat penggunaan diagram kombinatorial kompleks yang dikenal sebagai kotak ajaib dan lingkaran ajaib, dijelaskan di zaman kuno dan disempurnakan oleh Yang Hui (1238–1398 M). Zu Chongzhi (abad ke-5) dari Dinasti Selatan dan Utara menghitung nilai pi sampai tujuh tempat desimal, yang bertahan menjadi nilai pi paling akurat selama hampir 1.000 tahun.
Bahkan setelah matematika Eropa mulai mencapai kecemerlangannya pada masa Renaisans, matematika Eropa dan Cina adalah tradisi yang saling terpisah, dengan menurunnya hasil matematika Cina secara signifikan, hingga para misionaris Jesuit seperti Matteo Ricci membawa gagasan-gagasan matematika kembali dan kemudian di antara dua kebudayaan dari abad ke-16 sampai abad ke-18.

Matematika India

Arca Aryabhata. Karena informasi tentang keujudannya tidak diketahui, perupaan Aryabhata didasarkan pada daya khayal seniman.
Peradaban terdini anak benua India adalah Peradaban Lembah Indus yang mengemuka di antara tahun 2600 dan 1900 SM di daerah aliran Sungai Indus. Kota-kota mereka teratur secara geometris, tetapi dokumen matematika yang masih terawat dari peradaban ini belum ditemukan.[39]
Matematika Vedanta dimulakan di India sejak Zaman Besi. Shatapatha Brahmana (kira-kira abad ke-9 SM), menghampiri nilai π,[40] dan Sulba Sutras (kira-kira 800–500 SM) yang merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan,[41] menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Pāṇini (kira-kira abad ke-5 SM) yang merumuskan aturan-aturan tata bahasa Sanskerta.[42] Notasi yang dia gunakan sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalahnya prosody menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika meter bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci (yang disebut mātrāmeru).[43]
Surya Siddhanta (kira-kira 400) memperkenalkan fungsi trigonometri sinus, kosinus, dan balikan sinus, dan meletakkan aturan-aturan yang menentukan gerak sejati benda-benda langit, yang bersesuaian dengan posisi mereka sebenarnya di langit.[44] Daur waktu kosmologi dijelaskan di dalam tulisan itu, yang merupakan salinan dari karya terdahulu, bersesuaian dengan rata-rata tahun siderik 365,2563627 hari, yang hanya 1,4 detik lebih panjang daripada nilai modern sebesar 365,25636305 hari. Karya ini diterjemahkan ke dalam bahasa Arab dan bahasa Latin pada Zaman Pertengahan.
Aryabhata, pada tahun 499, memperkenalkan fungsi versinus, menghasilkan tabel trigonometri India pertama tentang sinus, mengembangkan teknik-teknik dan algoritma aljabar, infinitesimal, dan persamaan diferensial, dan memperoleh solusi seluruh bilangan untuk persamaan linear oleh sebuah metode yang setara dengan metode modern, bersama-sama dengan perhitungan [[astronomi] yang akurat berdasarkan sistem heliosentris gravitasi.[45] Sebuah terjemahan bahasa Arab dari karyanya Aryabhatiya tersedia sejak abad ke-8, diikuti oleh terjemahan bahasa Latin pada abad ke-13. Dia juga memberikan nilai π yang bersesuaian dengan 62832/20000 = 3,1416. Pada abad ke-14, Madhava dari Sangamagrama menemukan rumus Leibniz untuk pi, dan, menggunakan 21 suku, untuk menghitung nilai π sebagai 3,14159265359.


Matematika

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Euklides, matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh Raffaello Sanzio di dalam detail ini dari Sekolah Athena.[1]
Matematika (dari bahasa Yunani: μαθηματικά - mathēmatiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]
Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]
Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen.
Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]
Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.
Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.[8]

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα (máthēma), yang berarti pengkajian, pembelajaran, ilmu, yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (mathēmatikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), di dalam bahasa Latin ars mathematica, berarti seni matematika.
Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (ta mathēmatiká), yang dipakai Aristotle, yang terjemahan kasarnya berarti "segala hal yang matematis".[9] Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

Sejarah

Sebuah quipu, yang dipakai oleh Inca untuk mencatatkan bilangan.
Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.
Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktuhari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.
Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.
Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi.[11] Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.
Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."[12]

Ilham, matematika murni dan terapan, dan estetika

Sir Isaac Newton (1643-1727), seorang penemu kalkulus infinitesimal.
Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.[13]
Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".[14]
Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.
Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematician's Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.[15]
Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erdős sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya.[16][17] Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.

Notasi, bahasa, dan kekakuan

Leonhard Euler. Mungkin seorang matematikawan yang terbanyak menghasilkan temuan sepanjang masa
Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16.[18] Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.
Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homomorfisme dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (rigor).
Lambang ketakhinggaan di dalam beberapa gaya sajian.
Kaku secara mendasar adalah tentang bukti matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini.[19] Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.[20]
Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatu aksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.[21]

Matematika sebagai ilmu pengetahuan

Carl Friedrich Gauss, menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".
Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".[22] Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan.
Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]
Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper.[23] Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."[24] Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.
Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya fisika teoretis) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya.[25] Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya).
Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.
Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika.
Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.
Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan),[26][27] dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan.
Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.
Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan.
Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Hadiah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu (hipotesis Riemann) yang mengalami penggandaan di dalam masalah-masalah Hilbert.

Bidang-bidang matematika

Sebuah sempoa, alat hitung sederhana yang dipakai sejak zaman kuno.
Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetika, aljabar, geometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.
Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuarternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan aleph, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.
1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Bilangan asli Bilangan bulat Bilangan rasional Bilangan real Bilangan kompleks

Ruang

Pengkajian ruang bermula dengan geometri – khususnya, geometri euclid. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema pitagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri tak-euclid (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.
Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.
Illustration to Euclid's proof of the Pythagorean theorem.svg Sine cosine plot.svg Hyperbolic triangle.svg Torus.png Mandel zoom 07 satellite.jpg
Geometri Trigonometri Geometri diferensial Topologi Geometri fraktal

Perubahan

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam, dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyeledikinya. Fungsi-fungsi muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berpeubah real dikenal sebagai analisis real, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.
Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.
Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamika; teori kekacauan mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku deterministik yang masih saja belum terdugakan.
Integral as region under curve.svg Vector field.svg Airflow-Obstructed-Duct.png Limitcycle.jpg Lorenz attractor.svg Princ Argument C1.svg
Kalkulus Kalkulus vektor Persamaan diferensial Sistem dinamika Teori chaos Analisis kompleks

Struktur

Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian grup, gelanggang, lapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor, dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori galois.
Elliptic curve simple.svg Rubik's cube.svg Group diagdram D6.svg Lattice of the divisibility of 60.svg
Teori bilangan Aljabar abstrak Teori grup Teori orde

[sunting] Dasar dan filsafat

Untuk memeriksa dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an.[28] Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.
Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).
Gödel menunjukkan cara mengonstruksi, sembarang kumpulan aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, dan teori pembuktian, dan terpaut dekat dengan ilmu komputer teoretis.
 p \Rightarrow q \, Venn A intersect B.svg Commutative diagram for morphism.svg
Logika matematika Teori himpunan Teori kategori

[sunting] Matematika diskret

Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional, dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - Mesin turing.
Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal pemadatan dan entropi.
Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "P=NP?", salah satu Masalah Hadiah Milenium.[29]
\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix} DFAexample.svg Caesar3.svg 6n-graf.svg
Kombinatorika Teori komputasi Kriptografi Teori graf

[sunting] Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)
Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pemotongan atau sumber-sumber galat lain di dalam komputasi.